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Abstract: This article addresses the in silico–in vitro prediction issue of organometallic 

nanoparticles (NPs)-based radiosensitization enhancement. The goal was to carry out computational 

experiments to quickly identify efficient nanostructures and then to preferentially select the most 

promising ones for the subsequent in vivo studies. To this aim, this interdisciplinary article intro-

duces a new theoretical Monte Carlo computational ranking method and tests it using 3 different 

organometallic NPs in terms of size and composition. While the ranking predicted in a classical 

theoretical scenario did not fit the reference results at all, in contrast, we showed for the first time 

how our accelerated in silico virtual screening method, based on basic in vitro experimental data 

(which takes into account the NPs cell biodistribution), was able to predict a relevant ranking in 

accordance with in vitro clonogenic efficiency. This corroborates the pertinence of such a prior 

ranking method that could speed up the preclinical development of NPs in radiation therapy.

Keywords: biomedical applications of radiations, computer simulation, nanomedicine, virtual 

screening

Introduction
Radiosensitizing nanoobjects are becoming a major innovation in the field of radiation 

therapy with the promise of a breakthrough in anticancer therapies.1,2

Since the early 1990s, the number of articles published on the subject has kept 

increasing.3 Unfortunately, as it has been mentioned in 2013 by Etheridge et al,4 

“Many of the revolutionary nanomedicine technologies anticipated in the literature 

may be 20 or more years from clinical use”. Indeed, only a few nanoparticle (NP)-

radiation therapy combinations are undergoing clinical trials (only 3 records concerning 

NBTXR3 devices in ClinicalTrials.gov).5

In order to speed up the preclinical development of radiation therapy enhancing 

NPs, numerous studies have tried to predict their in vitro or in vivo radiosensitizing 

effect.6–9 The most common method, inherited from the practices of physics, is to 

use Monte Carlo simulators of particle transport in matter such as BEAM, MCNP, 

PENELOPE or Geant4.10–13 First attempts did not show satisfactory results. According 

to Butterworth et al,14 biological effects cannot, indeed, be accurately predicted on the 

basis of the gold NP concentration and beam energy, and they suggest oxidative stress 

as a central mechanism in mediating response. Yet, it should be nuanced as results 

are likely to depend on the simulation parameters. That is why in a recent comment, 

McMahon et al15 have highlighted the fact that theoretical prediction scenarios and 

values should be meaningful within a therapeutic context.
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Conversely to previous published studies, the goal herein 

is not to predict the X-rays dose enhancement effect of the 

studied NPs. Instead, as a step forward toward an efficient 

prediction of their radiosensitizing effects, we have preferred 

to develop a simple yet effective in silico method to predict 

an in vitro ranking of radiation-enhancing NPs. In fact, the 

suggested computerized method in this article could make 

it possible to select, from a high number of nanoobjects, 

the one providing the most promising results, thus speeding 

up the preclinical development of radiosensitizing NPs.

For this aim, in this article we compare 2 Monte Carlo 

approaches: 1) a classical one, not taking the cellular 

biodistribution of NP into account, we call it scenario A and 

2) our virtual screening that is called scenario B. Each method 

is used to establish an in silico ranking of 3 radiosensitizing 

NPs in U87 glioblastoma cells. Results of both scenarios were 

then compared with in vitro experiments (reference), which 

had been carried out prior to the Monte Carlo simulations.

While the ranking predicted in the scenario A did not fit 

the reference at all, in contrast, we showed for the first time 

how our in silico virtual screening method (scenario B), 

based on few in vitro experimental data, was able to provide 

us results in accordance with in vitro responses, therefore 

illustrating the relevant remarks of McMahon et al15 related 

to theoretical prediction scenarios.

Overview of the ranking process
Before illustrating our concept using the aforementioned 

scenarios A, B and reference results, we would like to give 

the reader an overview of our virtual screening process used 

in the scenario B.

Comparing or optimizing NP designs usually requires 

several experiments that are not only expensive but also 

time-consuming.4 The fundamental objective of our work was 

to elaborate a virtual screening process designed to quickly 

draw a relevant ranking of a high number of radiosensitiz-

ing NPs with as few experiments as possible. The number 

of experiments would then be drastically reduced compared 

with a standard approach. Once the computerized ranking has 

been established, the user could select a sample of the best 

NPs on which the user could perform the proper biological 

assays necessary to validate or refine the selection.

Before describing our ranking methodology, the reader 

should be aware that it was based on several assumptions.

 A1. First, the radiosensitizing power of NPs is likely to be 

not entirely linked to the DNA damages.16–19 Thus, the 

integrated or average dose deposited in the cell is an 

interesting information that could be correlated with the 

overall performance of a NP.

 A2. Then, it is mandatory to account for the intracellular 

distribution of NPs in the Monte Carlo simulator.20,21 

For instance, a transmission electron microscopy (TEM) 

image can be used to assess the intracellular colocaliza-

tion and the topology of each NP in each cell line. An 

inductively coupled plasma optical emission spectrometry 

(ICP-OES) quantification could be used as well to refine 

the results.22 Each scenario should be modeled afterward 

and should reflect information shown by TEM images and 

the ICP quantification. This assumption was illustrated 

by the comparison of the 2 scenarios A and B.

 A3. Finally, the radiosensitizing power of NPs was accu-

rately assessed in vitro by clonogenic assays whose 

results can be plotted as survival curves representing the 

fraction of surviving cells as a function of the dose.23

The suggested methodology was composed of 4 logical 

steps that should be carried out in order.

 S1. First, the different combinations of NP/cell and radiation 

types should be well established. If necessary, a design 

of numerical experiments strategy could be used in order 

to speed up the simulation process.

 S2. For each combination that will be modeled in the simula-

tor, the number of NPs in 1 cell as well as the size and 

distribution of NP clusters should be experimentally 

assessed.

 S3. The biodistribution of each combination in 1 cell should 

be faithfully modeled. The irradiation source chosen in 

the simulator should be close to the real one.

 S4. After the simulation is done, the mean dose in the cell 

should be recorded for each combination then NPs 

should be ranked with respect to it.

As aforementioned, in order to strengthen our approach, 

we carried out a preliminary experimental validation using 

3 types of NPs on U87 glioblastoma cells monolayer 

cultures irradiated using a 6 MV photon beam from a clinical 

accelerator.

Experiments
NP and cell characteristics
NPs
Iron (20 nm Fe

3
O

4
 with a polyvinylpyrrolidone (PVP) surface 

modified for biomedical applications, NanoXact formulation) 

and gold (20 nm with a PVP surface and 50 nm with a poly-

ethylene glycol [PEG] surface, BioPure formulation) NPs, 

suspended in water, were purchased from nanoComposixTM 

Inc. (San Diego, CA, USA) at a concentration of 20 or 

1 mg/mL, respectively. The stock suspensions were diluted 

appropriately to the required concentration in culture medium 

immediately prior to use.
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NP sizes were determined using Nanoparticles Tracking 

Analysis NTA 2.3 software on NanoSight system (Malvern 

Instruments Ltd, UK) and TEM.

cells
Human primary glioblastoma cell lines U87 MG (ATCC® 

HTB-14TM; LGC Standard, France) were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM) comple-

mented with 10% fetal bovine serum, 0.4% l-asparagine, 

0.36% l-serine, 1% l-glutamine, 1% essential amino acids, 

0.5% nonessential amino acids, 0.4% vitamins, 1.25% 

sodium pyruvate and 1% penicillin streptomycin. Cells were 

maintained in monolayers in a tissue culture incubator at 

37°C with 5% CO
2
 95% air. DMEM and amino acids were 

purchased from Gibco (Life Technologies, France) while 

other reagents were obtained from Sigma-Aldrich.

Distribution and quantification of NPs 
in cells
TeM imaging
First, 0.8×104 cells were plated in 96-well plates for 3 days 

and then exposed to 50 µg/mL of NPs for 24 h. After 2 washes 

with Hank’s balanced salt solution (HBSS; Sigma-Aldrich, 

France), cells were primary fixed with glutaraldehyde 2.5% 

in sodium cacodylate buffer 0.1 M pH 7.2 followed by a 

post-fixation step using osmium tetroxide 1% in sodium 

cacodylate buffer after several washings. Then, cells were 

rinsed again and dehydrated through a graded series of etha-

nol concentrations (30, 50, 70, 80, 90, and 100% for 5 min 

each) and embedded in epoxy-based resin (Embed 812, 

DDSA, NMA, and DMP30; Electron Microscopy Sciences, 

France). After resin polymerization and plastic dissolution 

with xylene, samples were cut in 90 nm thick slices using 

Ultra-cut E ultramicrotome (Reichert-Yung). Finally, the 

ultrathin sections were deposited onto carbon–Formvar cop-

per grids and observed under a CM12 electron microscope 

(Philips, France) operated at 80 kV. Photographs were taken 

using ITem software (Olympus, France).

ICP-OES quantification
For the intracellular NP quantification, 1.5×106 cells were 

plated in 175 cm2 culture dishes for 3 days, and then 

exposed to different samples of NPs for 1 or 24 h. After 

incubation time, 1 mL of culture supernatant was collected; 

cells were washed 3 times with phosphate-buffered saline, 

trypsinized, counted and centrifuged for 10 min at 300 g to 

obtain dry pellet.

Au or Fe content in supernatant and cell samples was 

determined using ICP-OES. The samples were dispersed in 

5 mL of aqua regia (67% HNO
3
/37% hydrochloric acid (w/w)) 

for 4 h at 80°C. Subsequently, the samples were diluted with 

a HNO
3
 5% (w/w) matrix to adjust the volume to 10 mL; 

the samples were then filtered (0.22 µm) and analyzed by 

ICP-OES to determine the elemental content with a precision 

of 5%. For calibration of the ICP-OES, single-element 

standard solutions were prepared by successive dilution in a 

HNO
3
 5% (w/w) matrix from a 1,000 ppm Au or Fe standard 

acquired from SCP Science (Quebec, Canada).24

Irradiation setup
A total of 2.5×105 cells were plated in 25 cm2 culture dishes 

containing culture medium for 48 h. The medium was 

removed, and cells were exposed to fresh medium containing 

NPs for 24 h. Cells were irradiated using a 6 MV photon beam 

from a Clinac® iX (Varian Medical Systems, Palo Alto, CA, 

USA) medical accelerator with respect to the scheme presented 

in Figure 1. The skin–source distance was set to 100 cm, well 

plates were placed between 3 and 6 cm PTW RW3 water-

equivalent slabs in order to take the build-up and the backscatter 

(respectively) into account. The field size was set to 30×30 cm 

so that a maximum of 4-well plates could be irradiated simul-

taneously. Monitor units were calculated so that a dose of 2, 4, 

6 or 10 Gy (±5%) was deposited into the well plates. Twelve 

hours after the irradiation, cells were washed with phosphate-

buffered saline, trypsinized, diluted 4-fold to allow sufficient 

plating volume, homogenized by aspiration/reflux with a 21 G 

needle mounted on a syringe to achieve a single cell suspension, 

counted and replated for survival analysis.

In vitro reference results
The cell survival was assessed using clonogenic assays. A 

total of 104 cells were plated in 6-well plates and incubated 

for 12 days at 37°C 5% CO
2
 95% air. Surviving colonies 

were stained with 1 mL of 3-(4,5-dimethylthiazol-2-yl)- 

2,5-diphenyltetrazolium bromide solution (1 mg/mL; Acros 

Organics; Thermo Fisher Scientific, France) and counted 

using GelCount™ (Oxford Optronix, Abingdon, UK). 

Results of the clonogenic assays were plotted as survival 

curves showing the fraction of surviving cells as a function 

of the dose deposited in the well plates.

Numerical modeling and simulation
general information on our simulations
Monte carlo simulator
For the present study, we used GATE 7.0 with the Geant4 

9.6.p03 and CLHEP 2.1.3.1 libraries. The pseudorandom 

number generator was the Mersenne Twister. We chose the 

Livermore physics list and activated Rayleigh scattering, 

www.dovepress.com
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photoelectric, Compton scattering, pair conversion, electron 

ionization and Bremsstrahlung effects. For the multiple scat-

tering, we chose the Urban95 model. More information about 

the parameters of our physics list can be found in Table 1. 

Auger electrons emission was activated through the atomic 

deexcitation functions. The energy and spatial cutoffs were 

set to 250 eV and 10 nm, respectively.

geometry of the simulation
The geometry entered in the simulator was highly simple 

(Figure 2): a water cube (edge size of 1 mm) containing a spher-

ical structure standing for a U87 cell (radius of 6 µm). Then 

depending on the NP being evaluated, a random distribution 

taking both the size and the number of clusters into account was 

generated inside the spherical cell structure. A cluster of NPs 

is defined as a group of NPs that are spatially close together 

in a cell. In the simulator, each cluster is a spherical structure 

containing a fixed number of NPs that are randomly distributed 

in it. Each NP is also modeled as a spherical structure. Each 

volume material was set to G4_WATER except the NPs that 

were either gold or iron structures.

Source specification
A cylindrical source (radius of 6 µm, height of 1 nm) was 

placed 1 cm away from the cell structure. The primary 

photon beam spectrum (Figure 3) was based on a 6 MV, 

10×10 cm beam calculated by Ding25 in 2002 for which the 

contributions $1 MeV were not used in order to significantly 

accelerate the calculation time.

runs and results
Each scenario was cut into 21 runs launched on a parallel cal-

culation platform. Each run had a different engine seed. For 

each run, a total number of 1010 primaries were tracked.

At the end of the simulations, the following results 

were recorded: 3D dose images (cube with an edge size of 

12 µm), secondary species production in the cell structure 

and a spectrum of the energy deposited in the cell structure. 

The analysis of the results was done using ROOT 5.34/32, 

ImageJ 1.49d, R and locally developed macros.26–28 Mean 

doses in the cell were assessed using the following 2 methods: 

a measurement on the 3D dose images and the integration 

of the energy deposited in the cell spectra.

Figure 1 Scheme of the irradiation setup that was used to deliver 2–10 Gy in the center of the well plates using a 6 MV beam with a field size of 30×30 cm.

Table 1 Physics list parameters and values

Process Model Final range

rayleigh scattering livermore Default
Photoelectric effect livermore 0.1 nm
compton scattering livermore 0.1 nm
Pair conversion livermore Default
electron ionization livermore 0.1 nm
Positron annihilation Penelope 0.1 nm
Bremsstrahlung e− livermore Default
Bremsstrahlung e+ livermore Default
auger electrons atomic deexcitation Default
Multiple scattering e− Urban95 Default
Multiple scattering e+ Urban95 Default
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scenario a: classical Monte carlo 
simulations
In order to prove that Monte Carlo simulations should 

preferentially take the biodistribution of the NPs into account, 

we have chosen to establish a ranking of our 3 NPs on the 

basis of classical Monte Carlo simulations. By “classical 

Monte Carlo simulation” we mean that they are not based 

on a preliminary evaluation of intracellular distribution of 

NPs. These simulations have been extensively detailed in 

the literature.8,29,30 In this counterexample, we have decided 

to fix the number of clusters (=10), the number of NPs per 

cluster (=100) and radius of each cluster (=250 nm), which 

are the same for our 3 NPs.

scenario B: our virtual screening process
Concerning our virtual screening process, number of clusters, 

clusters sizes and number of NPs per cluster were determined 

experimentally via ICP-OES and TEM imaging. Values of 

these parameters are summarized in Table 2.

Figure 2 scheme of the geometry that was modeled in the simulator; each volume material was set to g4_WaTer except for the NPs that were either gold or iron 
structures.
Abbreviation: NPs, nanoparticles.

Figure 3 energy spectrum of the particles entering into the U87 spherical structure.

Table 2 cluster characteristics depending on the NP type

20 nm iron 20 nm gold 50 nm gold

Number of clusters 34 10 9
Number of NPs/cluster 5,000 100 1a

cluster radius (nm) 250 250 25

Notes: a50 nm gold NPs do not form proper clusters, they stay spatially isolated. 
Therefore, the parameter “number of NPs/cluster” was set to 1.
Abbreviation: NPs, nanoparticles.
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Examples of TEM images of U87 cells with and without 

NPs are shown in Figure 4. Numerous measurements of the 

cluster sizes for each type of NP lead us to the choice of the 

parameters summarized in Table 2.

Results
In vitro analysis
assessment of radiosensitizing effects of the NPs 
by clonogenic assays
As this technique is considered as the gold standard in 

radiation biology, the radiosensitizing potential of the 3 previ-

ously described NPs was determined by clonogenic assays. 

U87 glioblastoma cells were exposed to gold or iron NPs at 

50 µg/mL for 24 h prior to irradiation with 6 MV X-rays. 

Figure 5 shows the radiation dose–response curves for 

U87 cells exposed or not to NPs. Surviving fractions were 

normalized to that of nonirradiated control cells in each of 

the experiments to correct for the direct cytotoxic effect of 

organometallic NPs. Dose–response curves of the form SF = 

exp[−(αD + βD2)] (with SF being the survival fraction, D 

the dose of radiations in Gy and α, β radiobiological curve 

fitting factors) were fitted to the data using least squares 

minimization, weighted using the standard error of each 

measurement. Statistical errors on fit values were calculated 

with 95% CI. The radiobiological parameters for each NP 

are summarized in Table 3. Results showed improvement 

in the response of U87 cells to radiation in the presence of 

20 nm NPs, as compared to control cells without NPs. The 

most significant response was obtained with 20 nm iron NPs 

compared to radiation only controls (eg, at 2 Gy, P=0.005). 

Therefore, there are strong presumptions to reject the null 

hypothesis, which means that the mean values were statisti-

cally different. Dose enhancement factors were calculated as 

the ratio of doses required to give the same surviving fractions 

as that of the radiation only control cells at a dose of 2 Gy 

(SF2). Dose-modifying factors were approximately 1.064, 

0.948 and 0.783 for 50 nm gold, 20 nm gold and 20 nm iron 

NPs, respectively.18

TeM observations of NP cellular uptake
After NPs incubation with cells, samples were prepared for 

TEM analysis. Whatever the NPs studied, they are trapped 

in macropinocytosis and endocytosis vesicles with a size 

of 250–1,250 nm, and clearly delineated by a membrane. 

Figure 4 TeM images of U87 cells.
Notes: 20 nm iron NP clusters (A); 20 nm gold NP clusters (B); 50 nm gold NPs (C); and a control image without NP (D).
Abbreviations: TeM, transmission electron microscopy; NP, nanoparticle.
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While 50 nm gold NPs were found as single objects in 

vesicles (1–2 NPs per vesicle), we have mainly observed 

agglomerates for 20 nm gold and 20 nm iron NPs. The TEM 

images show a higher number of clusters for 20 nm iron than 

for 20 nm gold NPs. ICP-OES analyses confirmed that NPs 

uptake in U87 cells was more important for 20 nm iron than 

for 20 or 50 nm gold NPs.

Monte carlo ranking results
For each simulation, the mean dose was measured on the 

3D dose images using ImageJ. Values were normalized 

so that the mean dose in water over the 21 runs is equal 

to 100.00%. We also measured the mean dose deposited 

into the cell on the spectrum of the energy using ROOT 

and found that both measurements gave the same results 

(example of an energy deposition histogram of a 20 nm iron 

NP, run #1, Figure 6).

scenario a
Concerning the scenario A, the mean values of the 21 runs ± 

95% CI are shown in Figure 7 and Table 4. The following 

ranking has been established using this classical simulation 

process (from worse to best): 20 nm iron NP, 20 nm gold NP, 

and 50 nm gold NP. Since its 95% CIs were not overlapping 

with others, only the dose enhancement result of the 50 nm 

gold NP was statistically different from the remaining ones.

scenario B
Regarding the scenario B, results for each run and each 

type of NP are shown in Figure 8; the mean values of the 

Figure 5 radiation dose–response curves for U87 cells exposed or not to NPs.
Notes: surviving fractions were normalized to that of nonirradiated control cells in each of the experiments to correct for the direct cytotoxic effect of organometallic 
NPs. error bars are 95% cI.
Abbreviation: NP, nanoparticle.

Figure 6 spectrum of the energy deposited into the cell structure with 20 nm iron 
NP clusters.
Abbreviation: NP, nanoparticle.

Table 3 Radiobiological curve-fitting parameters for each NP

NP α β

U87 without NP 0.0698 0
50 nm gold 0.0656 0
20 nm gold 0.0736 0
20 nm iron 0.0892 0

Abbreviation: NP, nanoparticle.
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Figure 8 scenario B: in ordinate, for each type of NP: values of the mean dose deposited into the cell structure normalized so that the mean of the values (green line) in 
water is equal to 100%; values are horizontally distributed from the run #1 to #21.
Abbreviation: NP, nanoparticle.

Figure 7 scenario a: mean ±95% cI of the mean dose deposited into the cell 
structure for each type of NP; values of the mean dose deposited into the cell 
structure were normalized so that the mean dose in water is equal to 1.000; results 
for the 50 nm gold NP are statistically significantly different.
Abbreviation: NP, nanoparticle.

Table 4 statistics summary of the results of the scenario a (in 
ascending order)

Sample Mean (%) SD (%) Individual 95% CI (%)

Water 100.00 0.326 (99.85; 100.15)
20 nm iron 100.18 0.326 (100.03; 100.32)
20 nm gold 100.20 0.331 (100.05; 100.35)
50 nm gold 100.48 0.327 (100.33; 100.63)

21 runs ± 95% CI are shown in Figure 9 and Table 5. The 

following ranking has been established using our virtual 

screening process (from worse to best): 50 nm gold NP, 

20 nm gold NP, and 20 nm iron NP. Since their 95% CIs 

are not overlapping with others, only the dose enhancement 

result of the 20 nm iron NP is statistically different from the 

remaining ones.

Discussion and conclusion
First, the dose enhancement results shown in Tables 4 and 5 

seemed surprisingly low compared to some values published 

in the literature.30,31 It is likely a consequence of the fact that 

the dose was averaged over the whole cell structure whose 

volume is much larger than that of the clusters (eg, the cell 

structure’s volume is 904.8 µm3 while the sum of the iron 
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Table 5 statistics summary of the results of the scenario B 
(in ascending order)

Sample Mean (%) SD (%) Individual 95% CI (%)

Water 100.00 0.326 (99.85; 100.15)
50 nm gold 100.15 0.349 (99.99; 100.31)
20 nm gold 100.20 0.331 (100.05; 100.35)
20 nm iron 100.53 0.375 (100.36; 100.70)

Figure 9 scenario B: mean ±95% cI of the mean dose deposited into the cell 
structure for each type of NP; values of the mean dose deposited into the cell 
structure are normalized so that the mean dose in water is equal to 1.000; results 
for the 20 nm iron NP are statistically different.
Abbreviation: NP, nanoparticle.

comparing more NPs, cells, sources, the accelerated process 

would not last much longer, whereas the usual process dura-

tion would be drastically extended.

This article addresses the in silico–in vitro prediction issue 

of NP-based radiosensitization enhancement. Conversely 

to previous studies, the goal is neither to predict the X-ray 

dose effect nor the surviving fraction of irradiated cell but to 

carry out computational experiments to quickly identify non-

efficient nanostructures and then to preferentially select the 

most promising ones for the subsequent in vitro and in vivo 

studies. To this aim, this article presents a computational 

ranking method and tests it on 3 different NPs by comparison 

with a standard Monte Carlo simulation not taking the biodis-

tribution of NPs into account (scenario A) and the reference 

in vitro responses. The latter established the following ranking 

(from the best radiosensitizing NPs to the worse): 20 nm iron 

PVP, 20 nm gold PVP and 50 nm gold PEG. As the classi-

cal Monte Carlo method led us to the opposite ranking, the 

accelerated in silico method that we proposed accurately pre-

dicted the reference results. That corroborates the relevance of 

such a prior ranking method able to speed up the preclinical 

development of NPs in radiation therapy.
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NP clusters’ volume is 2.2 µm3). A visual analysis of the 

3D dose images highlights that the deposited dose is locally 

enhanced in the vicinity of NP clusters. An example of a 3D 

dose image (from the scenario B) in the presence of iron NPs 

is shown in Figure 10.

Then, as it can be seen when comparing Figures 7 

and 9 as well as Tables 4 and 5, the scenario A ranking 

was completely different than that of scenario B. Indeed, 

in the classical Monte Carlo ranking, the NP showing the 

highest radiosensitizing potential was the 50 nm gold NP 

whereas the worse NP seemed to be the 20 nm iron NP. 

However, referring to the reference in vitro results shown 

in Table 3, there was no doubt that the correct ranking was 

established in the scenario B, which corresponds to our 

virtual screening process. We thus believe that both the 

distribution and the quantity of NPs in the cell should be 

experimentally evaluated before taking them into account 

to run Monte Carlo ranking computations, which is the 

originality of our approach.

Figure 11 compares 2 alternative approaches to rank 

the radiosensitizing effects of NPs: an in vitro and classical 

method versus our in silico and innovative technique. As 

it is shown in this figure, our accelerated in silico process 

could save up to 56 days of experiment compared to a simple 

study requiring 5 consecutive clonogenic assays. Moreover, 

it should be noticed that for more complex combinations 

Figure 10 scenario B: 3D view of a dose image with a visible enhancement in the 
vicinity of the iron NP clusters (black spheres), which are located inside the U87 cell; 
the image boundaries are in red (1×1×1 µm).
Abbreviation: NP, nanoparticle.
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